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Abstract 

It is well known that structural recovery in polymeric glass formers leads to the enthalpy overshoot in nonisothermal 
experiments. One common model for describing this phenomenon is the Tool-Narayanaswamy-Moynihan (TNM) equation. 
Here we apply the TNM equation to analyze a typical temperature-modulated DSC (TMDSC) trace and examine the influence 
of the material nonlinearities on the dynamic heat flow. We show that, in the glass-transition region, the oscillating heat-flow 
response to the sinusoidal temperature input is a distorted sine wave. Hence, linear analysis of the phase lag between heat flow 
and temperature is not physically meaningful. The degree of distortion of the sinusoidal heat flow increases as the magnitude 
of the excess enthalpy annealing peak increases. In addition, we perform a thermal analysis of samples having different 
geometries and show that an apparent phase lag can result in the measured response due to the presence of thermal gradients in 
the sample. The significance of the results is discussed. © 1997 Published by Elsevier Science B.V. 

Keywords: Calorimetry; Dynamic calorimetry; Lissajous loops; Temperature-modulated DSC; Scanning calorimetry; 
Structural recovery; Tool-Narayanaswamy model 

I. Introduction 

Temperature-modulated differential scanning 
calorimetry (TMDSC) is a new technique in thermal 
analysis in which the normal temperature scan used in 
DSC is, generally, overlaid by a sinusoidal perturba- 
tion. The purported advantages of TMDSC include the 
ability to separate overlapping phenomena, as well as 
improved resolution and sensitivity. [1] However, 
analysis of the temperature-modulated differential 
scanning calorimetry (TMDSC) is currently the sub- 
ject of debate. [1-3] One approach suggested by 

*Corresponding author. 

Schawe [3] involves a dynamic heat capacity analysis, 
similar to what one would obtain in dynamic mechan- 
ical measurements, i.e. one based on linear response 
theory. The phase angle between the sinusoidal heat 
flow and the sinusoidal temperature (or temperature 
derivative) is related to the loss in the system and is the 
parameter of interest. However, as Schawe notes, this 
approach is valid only if the response is linear. If the 
response is nonlinear, the heat flow will be a distorted 
sine wave, so that phase-angle measurements become 
meaningless. It is for this reason that the use of 
TMDSC to monitor nonlinear processes such as melt- 
ing and reaction has been questioned [4]. One of the 
objectives of this paper is to show that the kinetics 
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involved in structural recovery in the glass-transition 
region will make a linear analysis questionable in this 
region also. 

There is a considerable body of work that models 
the impact of structural recovery on heat flow in 
standard DSC experiments in the glass-transition 
region [2,5-10]. The Tool-Narayanaswamy-Moyni- 
han-type (TNM) models [5,6] have been very success- 
ful, not only in quantitatively predicting the material 
response to complex thermal histories, but also in 
providing a physical picture of the reasons for the 
behavior. The models are able to describe manifesta- 
tions of glassy behavior including the rate-dependent 
glass temperature Tg, structural recovery, and the 
asymmetry of approach to equilibrium, the latter of 
which is due to the nonlinearity of structural recovery 
[11]. Of particular interest here is whether structural 
recovery and the nonlinearities, generally associated 
with it, should be considered in the analysis and 
application of temperature-modulated differential 
scanning calorimetry (TMDSC) measurements. Con- 
sequently, we perform model calculations for typical 
TMDSC thermal histories and investigate how the 
coupling between the thermal history and structural 
recovery impacts the TMDSC response as well as the 
interpretation of said response. 

We summarize our results using Lissajous loops, 
which provide easy visualization of the degree of 
linearity between a sinusoidal input and the resulting 
output. To obtain a Lissajous loop, the response is 
plotted vs. the driving force. For a linear "viscoelas- 
tic" response, an elliptical pattern would be obtained. 
By analogy with dynamic mechanical measurements, 
the "elastic" in-phase component of the response is 
determined by the angle of the major axis of the 
ellipse. The "viscous" out-of-phase component of 
the response is related to the energy dissipated per 
cycle, which is equal to the area within the loop. A 
completely in-phase response will give a line, whereas 
a completely out-of-phase response will give a circle. 
If the response is nonlinear, the resulting Lissajous 
plot will be irregular in shape rather than elliptical. 
The linear response parameters for the material cannot 
be calculated when nonelliptic loops are observed. 
[121 

Lissajous loops have been used to test the quality of 
experimental TMDSC data by Wunderlich et al. 
[ 13,14]. In these works, quasi-isothermal experiments 

were performed in which the average temperature is 
held at a constant value for approximately twenty 
minutes while the heat-flow response to the oscillating 
temperature input is measured. The Lissajous plots 
were made by plotting heat flow vs. temperature, and 
generally showed wide, relatively stable ellipses at 
steady state. In what follows, we propose that the more 
appropriate variables for the Lissajous plot are heat 
flow vs. the instantaneous heating rate (dT/dt) rather 
than heat flow vs. temperature, since heat flow 
depends directly on the heating rate. The resulting 
plots yield direct information on the value of the 
apparent heat capacity. 

Finally, we are interested in the effects of thermal 
lag on TMDSC results. Since the phase lag between 
the heat flow and the program temperature (or tempera- 
ture derivative) is being measured, we are concerned 
that thermal gradients in the DSC sample will contrib- 
ute to the apparent phase lag. To this end, we calculate 
the temperature profile in the DSC sample using the 
heat conduction equation and then perform model 
calculations with the thermal gradient incorporated. 

2. Modeling TMDSC response in glass-forming 
materials 

2.1. The material response equations 

The output of TMDSC is simply heat flow as a 
function of time and/or temperature. We calculate the 
heat flow by noting that it is the time derivative of the 
enthalpy, which is, in turn, a function only of tem- 
perature in the equilibrium state (at constant pressure). 
In the glassy state, however, enthalpy is dependent on 
temperature and on the structure of the glass. A 
convenient measure of the structure of the glass is 
the fictive temperature, Tf, originally defined by Tool 
[15]. (Tf is defined as the temperature at which the 
enthalpy extrapolated along the glassy line would 
equal the equilibrium value.) Assuming that the 
enthalpy of the equilibrium liquid at zero Kelvin is 
zero, the enthalpy (H) of an amorphous material can 
be written as follows: 

Tf T 

T 0 

(1) 
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where ACp is the difference in heat capacity between 
the equilibrium (liquid) and glassy states (Cp~ - Cpg), 
and Cpt is the equilibrium heat capacity. Here, in order 
to simplify calculations, we assume that the ACp and 
Cpl are independent of time and temperature. Then, the 
enthalpy is given by: 

H ~-" ACp(Tf - T) + CplT = ACpTf -I- CpgT 

(2) 

The heat flow (P) is simply the time derivative of the 
enthalpy: 

dH ACp~t q_cpgdT P - - d  = ¥ (3) 

derived by This equation is equivalent to that 
Moynihan [6]. 

For an ideal experiment, there is no thermal lag in 
the sample, and the instantaneous heating rate in the 
sample (dTIdt) would equal that of the program tem- 
perature. For this case, the problem of modeling the 
heat flow during a DSC temperature ramp is one of 
modeling the structural evolution of the material, i.e. 
dTfldt = (dTf/dT) (dT/dt). It is noted that, in a real 
TMDSC experiment, there is thermal lag in the sample 
and that this contributes to the measured phase lag. 
Here, we first develop the equations for an ideal 
TMDSC experiment with no thermal lag. We perform 
a thermal lag analysis in a subsequent section. 

The Tool-Narayanaswamy model [5] accounts for 
the nonlinear behavior of glassy materials by includ- 
ing terms for the dependence of molecular mobility on 
glassy structure and for the nonexponential nature of 
structural (in this case enthalpy) recovery. Moynihan's 
formulation [6] of the Tool-Narayanaswamy model of 
structural relaxation (TNM model) is convenient 
because it yields the evolution of the fictive tempera- 
ture for a given thermal history. A full description of 
the TNM formulation is given elsewhere [6]; only a 
brief description follows. According to the TNM 
model, the structural recovery process is represented 
by the generalized Kohlrausch [16]-William-Watts 
[17] (KWW) function: 

d-'-T- -- 1 - exp - (dt/7-0) (4) 

The nonexponentiality of the process is described by 
/3; the nonlinearity is incorporated into the model by 

allowing the retardation time To to be a function not 
only of temperature but also of structure (Tf) (and 
hence a function of time). Eq. (4) can be solved 
numerically for a given thermal history which begins 
at a temperature To above Tg: 

exp " Atj ~ Tf,n -- To + Z ATi 1 -  - 
i=1 

(5) 

where Tf., is the fictive temperature after the nth 
temperature step, At/ the time step, and AT/ the 
temperature step (which is related to the time step 
by the instantaneous heating rate). Generally, it is 
found that time steps can be taken such that the 
temperature steps are 1 K in the equilibrium liquid 
regime and deep in the nonequilibrium glass; in the 
glass-transition region, where enthalpy recovery is 
observed, step sizes need to be reduced to 0.25 K or 
less [7]. To model the sinusoidal temperature history 
in TMDSC, we found that smaller step sizes must be 
used and that temperature steps of 0.05 K or less gave 
convergent results in all cases examined. The results 
presented here are for 0.05 K temperature steps. 

A phenomenological equation relating the retarda- 
tion time To to temperature and structure (Tf) is needed 
to perform the model calculations. The Tool-Naraya- 
naswamy equation [5] is an Arrhenius-like equation, 
and is widely used: 

xAh ( 1 -  x) Ah 
In T0 = ln a + ~ + RTf (6) 

where the parameter x, introduced by Moynihan [6], 
partitions the material dependences between tempera- 
ture and structure (Tf), and Ah and In A are assumed to 
be constants. One problem with this equation is that it 
is unable to describe the observed Vogel [18] or 
Williams-Landel-Ferry [19] behavior in the equili- 
brium limit when Tf = T. However, since the Arrhe- 
nius behavior is approximately correct over a narrow 
temperature range and since the parameters have been 
obtained for several materials [7], it is used in the work 
described here. 

2.2. The ideal TMDSC experiment 

The evolution of the fictive temperature during a 
given thermal history is given by the solution of 
Eq. (4) coupled with an appropriate expression for 
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the relaxation time. The thermal history used for 
modeling an TMDSC experiment includes the cooling 
leg from above Tg to a point below Tg and the sub- 
sequent heating leg to above Tg. The temperature is 
generally temperature-modulated only in the heating 
leg. We first assume that no thermal lag is present such 
that the temperature of the sample is equal to the 
temperature of the furnace. The thermal history is 
then: 

T = T o - q t  t < tl (7) 

T = To - q t l  + m ( t - t l )  

+ A sin [w(t - tl)] t > h (8) 

where tl is the time at which the cooling leg is 
completed, q the cooling rate, m the heating rate, A 
the amplitude of the temperature modulation and w the 
radian frequency of the modulation. For the heating 
leg, the instantaneous heating rate, which is used in 
Eq. (4) to compute the heat flow, is given by: 

dT 
- - = m + A w c o s [ w ( t - h ) ]  t > t l  (9) 
dt 

2.3. The problem with thermal gradients included 

For a real experiment, in which a thermal gradients 
exists, the heat flow given in Eq. (3) is calculated from 
the heating rate and fictive temperature both averaged 

To simplify calculations, we look at the effect of 
phase lag deep in the glassy state, where the first 
integral in Eq. (10) is zero since essentially no struc- 
tural recovery occurs deep in the glass (dTf/dt = 0). 
The second integral in Eq. (10) can then be deter- 
mined by solving the one-dimensional heat conduc- 
tion equation [20], in which radial heat transfer, given 
below, is neglected for the temperature profile: 

O OT OT 
~x l~ ~x = pCp - ~  (11) 

where n is the thermal conductivity, p the density, and 
Cp the heat capacity of the material. To solve the initial 
boundary value problem, the boundary conditions 
need to be specified. It is assumed that both the top 
and bottom of the sample are at the same temperature 
and a symmetrical gradient is present in the sample, 
i.e. the sample pan is assumed to be a perfect heat 
conductor, so that: 

T(x = O) = To - qtl + m(t - t l  ) 

+As in[w( t - t l ) ]  t > h  (12) 

T(x = L) = To - qtl + m(t - tl) 

+ A s i n [ w ( t - h ) ]  t > t l  (13) 

The boundary value problem can be solved analyti- 
cally for modulation at isothermal temperatures 
(where n is a constant, q = 0, and m = 0). The solution 
is given by the following series: 

4wL 2 ~ (mr)2cos (wt) + (wLZ /k  )sin (wt) - (mr)2exp (-(mr)2 tk / L 2) . fnTrx,~ 
- 2_ ,  s 'nt -L-- )  T(x, t) = [To + sin (wt)] T n=l mr[(mr) 4 + (wL2/k) 2] 

1 1 

over the entire sample: 

P =_ -~ = ACp d~+Cpg --~d~ 

0 0 

(10) 

8a;L 2 ~d ((nrr)2wsin (wt) - 

v = l  

P = CpgA [~ cos (wt) 

(14) 

where k is the thermal diffusivity = MpCp. Eq. (14) 
can be inserted into Eq. (10) and integrated to give an 
analytical equation for the heat flow for the case in 
which there is a symmetrical thermal gradient in the 
sample and where dTf/dT = 0: 

(wL2/k)a;cos(wt) + (~)exp(-(nTr)2tk/L2))l  
(15) + ] 

where ~ is the dimensionless coordinate through the 
thickness of the sample (= x/L, where x is the thick- 
ness direction measured from the bottom of the sample 
and L the sample thickness). 

An analytical solution can also be obtained in 
the rubbery state, where dTfldT=dT/dt. It is 
equivalent to Eq. (15) except that Cpl would replace 
Cpg. 
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3. Description of simulated experiments 

3.1. Simulating ideal experiments 

Calculations were performed for polystyrene and 
poly(vinyl chloride) assuming no thermal gradient for 
two cooling rates, 0.1 and 5.0°C min -~. Typical of  
TMDSC experiments, the underlying heating rate was 
chosen to be 5°C rain - t  in all calculations. The mod- 
ulation amplitude and period (=  27rlw) were also taken 
to be typical values used in TMDSC experiments: 1 °C 
and 60 s, respectively. Two cooling rates were used to 
demonstrate how the structural recovery on heating, 
which increases as the cooling rate decreases, results 
in distortions in the sinusoidal heat flow. 

Polystyrene and poly(vinyl chloride) were used for 
the calculations presented here due to the large differ- 
ences in the stated values of  the nonlinearity parameter 
x and the nonexponential parameter/~. The values used 
for AhlR, x,/~, and In A, Tg, Cpg and Cpl are reported in 
Table 1 for the two materials. The values used are 
taken from the literature [7,21,22] with the exception 
of  the heat capacity data for polystyrene, which was 
obtained in one of  our laboratories [23]. 

3.2. Simulating experiments with thermal gradients 

To determine the effects of  thermal gradients, a 
quasi-isothermal TMDSC experiment was simulated 
in which the underlying heating rate is zero. Poly- 
styrene was used for these calculations, and the mod- 
ulation amplitude and period were again 1 °C and 60 s, 
respectively. Calculations were performed at 50°C, 
deep in the glass, to demonstrate that an apparent 
phase lag may be observed experimentally due to 
thermal gradients in the sample in cases where the 
ideal calculations predict no phase lag. The physical 

parameters used to calculate the magnitude of the 
thermal gradient were: p = 1.04 g c m  -3 [24], 

= 1.17 x 10 -3 J cm - l  s - t  (by interpolation of  lit- 
erature data [25] to 50°C), and Cpg = 1.52 J g - i  K-1.  
Two sample sizes were considered: 0.05 and 0.2 cm 
thick. 

4. Results and discussion 

4.1. Lissajous loop analysis of ideal TMDSC 
experiment 

Figs. 1 and 2 show the calculated Lissajous plots for 
an ideal (no thermal lag) polystyrene sample during 
heating in the TMDSC at 5°C/min after cooling at 5 
and 0.1°C min - l ,  respectively. Figs. 3 and 4 give 
analogous results for poly(vinyl chloride). Traditional 
Lissajous loops are made by plotting an output 
response vs. a driving signal. Here, we plot heat flow 
vs. the instantaneous heating rate (dTIdt), rather than 

i Polystyrene 3 
q = § ° C / m i n  
m = 5 o C / m { n  
A ' I ° C  Heat Fl°w0"2 P~~ / / t  0 " 2 i n  W i g  

0 . 0  ~ T g  R u b b e r  i 0.0 
I , i , i i i ~ , i i I i I i , i , t i i i i , ] , i i i 

0 . 0  0 . 1  0 . 0  0 . 1  0 . 0  0 . 1  

H e a t i n g  R a t e  i n  ° C / s  

Fig. 1. Calculated Lissajous loops for polystyrene in three 
temperature regimes during TMDSC heating scans at 5°C/rain 
after cooling at the same rate. Distortion of the oscillating heat flow 
is observed near Tg. 

Table 1 
Parameters used in model calculations 

Material Tg (K) Ah/R (K) a x a /3 a In (A/sec) a Cpg (J g-= K -=) at T s Ce] (J g-~ K -~) at Tg 

Polystyrene 373.2 b 80,000 0.46 0.71 -216 1.52 c 1.77 ~ 
Poly(vinyl chloride) 353.0 a 225,000 0.10 0.23 -622 1.12 d 1.43 d 

"From Ref. [7]. 
b From Ref. [21]. 
¢ From Ref. [23], 
a From Ref. [22]. 
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0.4 ~ . ~  J . p . ~  ~ ' r  , . ~ ' ,  ~ ' I r j ' I ' 0.4 

o . . . .  Z2 q = O . l O C I m l n  
r n . 5 o C / m i n  

A = I ° C  

0.2 p-eo= 0.2 

Heat Flow 
in W/g 

0.0 Tg Region Rubber 0.0 

I , ~ , I i I i i i I ~ I = I , I , I , I , I , ~  

0.0 0.1 0.0 0.1 0.0 0.1 

Heating Rate in "C/e 

Fig. 2. Calculated Lissajous loops for polystyrene in three 
temperature regimes during TMDSC heating scans at 5°C/min 
after relatively slow cooling. Large distortions of the oscillating 
heat flow are observed near T s. 

0.4 

0.2 
Heat Flow 

in Wig 

0.0 

p , ~ - ,  i ' i , I ' i i , i ' r ' r ' I ' ( ' i I , | 0 , 4  

P o l y ( v l n y l  c h l o r i d e )  

qtS"Clmln 
m . S ° C / m l n  

p,,eO= O. 2 

Z Robbor  0.o 
/ 

i l l l  I , l l l , l l l l l , [ , l , l = l  , i l l  , /  

0.0 0.1 0.0 0.1 0.0 0.1 

Heating Rate in °C/e 

Fig. 3. Calculated Lissajous loops for poly(vinyl chloride) in three 
temperature regimes during TMDSC heating scans at 5°C/min after 
cooling at the same rate. Distortion of the oscillating heat flow is 
observed near Tg. 

0.4 0.4 , i , i  i , i ,  , i . l , l , ~ , l , l r l ' r  

P o l y ( v l n y t  ( ] h l o d d e )  

m = 5 * C / m l n  
A = l O C  

Heat Flow 0.2 p=so= / 0.2 

in Wig 

0.0 / G l m e  Rubber 0.0 
0 * C  7 5  - 1 0 0 * C  

, i , l , l , l , l , l , d , l , I  , I , 1 , 1 , 1 , 1  

0.0 0.1 0.0 0.1 0.0 0.1 

Heating Rate In °C/s 

Fig. 4. Calculated Lissajous loops for poly(vinyl chloride) in three 
temperature regimes during TMDSC heating scans at 5°C/min after 
relatively slow cooling. Large distortions of the oscillating heat 
flow are observed near Tg. 

heat flow vs. temperature as was done by Wunderlieh 
[13,14]. The reason for this is that, based on Eq. (4), 
the heat flow should be in-phase with the instanta- 
neous heating rate for a perfectly "elastic" response 
and a line with slope Cp would then be obtained on the 
Lissajous plot. An equivalent representation would be 
a plot of enthalpy vs. temperature, since enthalpy is in- 
phase with temperature for the perfectly "elastic" 
response. However, when heat flow is plotted vs. 
temperature, as in the work by Wunderlich [13,14], 
the perfectly "elastic" (in-phase) response gives a 
circle, indicating a phase lag of 90°C, if the traditional 
interpretation of the Lissajous plot is made. Further- 
more, the heat capacity cannot be obtained directly 
from Wunderlich's loops, whereas, in our representa- 
tion, the apparent heat capacity is equal to the slope 
of the loop analogous to viscoelasticity where the 
modulus is the slope of the stress vs. strain loop. Thus, 
although Wunderlich's representation is not incorrect, 
it does not directly yield as much information as our 
representation. 

We note that our Lissajous loops are not centered 
about the zero point in the abscissa due to the under- 
lying heating rate so that the loops go from dT/ 
dt = m + A0v cos (~vt) = - 0.021 to 0.188°C/s. Later, 
when we show Lissajous loops for quasi-isothermal 
experiments (where m = 0), the Lissajous loops are 
centered about zero. 

Figs. 1--4 each contain three plots, one in the glassy 
regime, one in the glass-transition region, and one in 
the rubbery regime. The Lissajous plot is a line in the 
glassy regime with a slope of Cpg. This can be under- 
stood by examining Eq. (4). In the glassy limit, where 
virtually no structural recovery occurs (dTtCdt ~ 0), 
Eq. (4) reverts to: 

C dT P =  pg--~ (16) 

Thus, in the glass, the heat flow and instantaneous 
heating rate are calculated to be in-phase for the ideal 
experiment. A similar result is obtained in the rubbery 
regime except that, in this case, the slope of the line is 
Cpt since dTt/dt = dT/dt in equilibrium so: 

dT 
P = Cpl -~  (17) 

Examination of Figs. 1-4 and Eqs. (16) and (17) 
show a straightforward method to obtain heat capa- 
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cities deep in the glassy state and in the equilibrium- 
liquid regime from TMDSC results when no thermal 
lag is present in the sample. As shown later, however, 
thermal lag causes a decrease in the apparent heat 
capacity from the actual value. 

In the glass-transition region, shown in the central 
part of each figure, the Lissajous loops show a pro- 
gression of behaviors from a line with slope Cpg to 
distorted ellipses and then back to a line with slope Cp~. 
The distorted ellipses indicate that the oscillatory 
response is nonlinear in this (glass-transition) regime. 
The distortion is considerably larger for the slower 
cooling rate (Figs. 2 and 4) but it is present for both 
rates. Hence, it appears that the degree of distortion 
increases as the magnitude of the excess enthalpy 
annealing peak increases. This is reasonable because 
large excess enthalpy annealing peaks are accompa- 
nied by relatively large changes in the fictive tem- 
perature over a small temperature (or time) range. 
Hence, the term dT~/dt in Eq. (3) changes rapidly 
from a value near 0 in the glass to a relatively large 
value when an excess enthalpy annealing peak is 
observed and then back to a value equal to dTIdt in 
the equilibrium liquid. The distortion in the sinusoidal 
heat flow is due to the fact that dTfCdt is not in-phase 
with dTIdt when the excess enthalpy annealing 
peak occurs. 

The distortions in the oscillatory heat flow can be 
seen more explicitly, although not as dramatically, in 
Fig. 5, where we plot the calculated heat flow as a 
function of time in the glass-transition region for 
polystyrene. Calculations were performed for a sam- 
ple cooled at 0.1°C min -! and heated at 5°C min -1 

0 . 4  , , ~ . , . , ~ ~ , . p ~ 1 . 5  
A = I - C  

0.3 1.0 

0.2 0.5 
H e a t  F l o w  H u t  F l o w  

I n  W / g  0 . 1  0 . 0  i n  W / g  

0 . 0  -0 ,5  

- 0 . 1  ' ' ' " ' '  ~ ' ~ ' ' ~ ' J • ' - 1 . 0  

9 0  1 5 0  2 1 0  2 7 0  

T i m e  I n  s 

Fig. 5. Heat flow vs. time for polystyrene in the vicinit of T s during 
heating at 5°C/min after cooling at 0. I °C/rain. The amplitude of the 
oscilliatory temperature is I°C and 5°C, respectively. 

and for oscillatory temperature amplitudes of 1 and 
5°C. The distortion of the sinusoidal heat flow 
increases as the amplitude of the temperature oscilla- 
tion increases. 

It is clear from the results in Figs. 1-5 that the 
oscillatory heat flow response in the glass-transition 
region can be highly nonlinear. When such distortions 
are present, the linear response parameters (i.e. Cp', 
Cp", and tan 6) are obtained using a Fourier transform 
analysis and the phase lag 6 is generally equated with 
the phase lag between the instantaneous heating rate 
and the first harmonic of the heat flow. If significant 
distortions are present, the resulting linear response 
parameters are not physically meaningful and cannot 
be quantitatively compared for different scans because 
their values depend on the degree of distortion present 
in the scans. This conclusion is corroborated by the 
fact that Wunderlich [13] observed that the breadth of 
the glass transition and the value of Tg obtained from 
the reversing heat flow (akin to Cp') changed system- 
atically as the magnitude of the excess enthalpy 
annealing peak increased (i.e. as the degree of non- 
linearity between the heat flow and instantaneous 
heating rate increased). 

We have shown that the relationship between the 
heat flow and the instantaneous heating rate is non- 
linear in the glass-transition region. It is less clear how 
the Tool-Narayanaswamy parameters influence the 
strength of the nonlinearity of the response (i.e. the 
degree of distortion in the Lissajous plot). The para- 
meter ~ represents the width of the retardation spec- 
trum, and intuitively, it seems it should not impact the 
material's nonlinear response. On the other hand, it 
would seem that the parameter x should impact the 
nonlinear response since x partitions the temperature 
and structure dependences of the retardation time. Yet 
in our calculations, poly(vinyl chloride), which has a 
small x (large structure dependence) shows less dis- 
tortion of the Lissajous loops in the glass-transition 
region than does polystyrene. Hence, it appears that 
there is a complex coupling between structure depen- 
dence, width of the retardation spectrum, and experi- 
mental conditions that determines the impact of 
structural recovery on the TMDSC response upon 
traversing the Tg region. We speculate that it is the 
breadth of the glass transition of poly(vinyl chloride), 
as reflected in the wide spectrum of retardation times 
(low fl), that dampens the nonlinear response under 
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the experimental conditions chosen for simulation in 
this study. 

Calculations we performed with x = 1, and all other 
parameters equal to those used for Fig. 2, still showed 
distorted Lissajous loops through the glass transition 
although the distortions were smaller and similar to 
those shown in Fig. 1. Thus, the nonlinearity of struc- 
tural recovery need not be present to obtain the non- 
linear relationship between the heat flow and the 
temperature. Rather, what seems to be necessary is 
the nonlinear temperature dependence of 7"0. The 
strength of the distortions in the heat flow then arise 
from a complex coupling between the nonlinear mate- 
rial behavior, the width of the retardation spectrum, 
and the experimental conditions. 

This point is consistent with the results of Hutch- 
inson and Montserrat [26] who performed similar 
calculations using a simple exponential function 
(/3 = 1 in the KWW equation) but did not report 
observing the nonlinear responses seen here. Based 
on our calculations, where we used/3 = 1 and faster 
cooling rates, the reason for the differences from our 
results is that Hutchinson and Montserrat chose cool- 
ing and heating conditions ( q = 2 0 ° C m i n  -1 and 
m = 2.5°C min -1) which result in no enthalpy over- 
shoot and, hence, little distortion in the sinusoidal heat 
flow and the resulting Lissajous loop. This implies that 
the selection of thermal histories chosen for TMDSC 
measurements through the glass transition is governed 
by different criteria than is the same selection for 
untemperature-modulated DSC. In untemperature- 
modulated DSC, it has been recommended [27] that 
the heating and cooling rates be the same or that the 
heating rate be faster than the cooling rate to avoid 
physical aging during heating. The conditions studied 
in this paper conform to this set of criteria but resulted 
in nonlinearities that make the linear analysis applied 
to TMDSC results questionable. On the other hand, for 
a condition in which the cooling rate is eight times the 

l 
heating rate, nonlinearities are much smaller and a 
linear analysis may be more appropriate. The selection 
of thermal histories for TMDSC to avoid the non- 
linearities seen here is beyond the scope of this work. 

4.2. Thermal gradient effects 

Finally, we examine the effects of thermal gradients 
on apparent phase lag in the TMDSC experiments. 

0 . 2  , ) r I ' , ' r ' r 

l-i i 
0 . 1  A.'I~ 

PfeO= 

. . . . .  0.0G o m  

Heat Flow 0 . 0  I -  

i n  Wig 

- 0 . 1  

/ 

- 0 . 1 0  0 . 0 0  0 . 1 0  

Heating Rate i n  * C / s  

Fig. 6. Lissajous loops calculated taking thermal lag into 
consideration for polystyrene during a quasi-isothermal TMDSC 
experiment at 50°C for samples 0.05 and O.20cm thick, 
respectively. 

Fig. 6 shows two Lissajous loops obtained for glassy 
polystyrene at 50°C in a simulated quasi-isothermal 
experiment in which thermal gradients are present in 
the sample. The two loops correspond to samples of 
different sizes: one 0.05 cm thick and the other 
0.20 cm thick. The phase lag between the heat flow 
and the heating rate is greater in the thicker sample 
due to the larger thermal gradient. Hence, the Lissa- 
jous loop of the thicker sample is broader. In neither 
case is the simple line with slope Cpg and zero width, 
which we observed for the ideal TMDSC experiment 
in the glassy state in Figs. 1--4, obtained. However, an 
apparent heat capacity can be obtained from the slope 
of the loops shown in Fig. 6. This apparent heat 
capacity does not equal the true heat capacity, but 
decreases as the thermal lag increases. For the sample 
of thickness 0.05 cm, the average phase lag between 
the heat flow and the heating rate is less than 1 deg 
(0.0028 radians) and the slope of the loop is 
1.519 J g- i  K-l ,  nearly equivalent to the Cpg input 
(1.52 J g-1 K-l) to the simulations. However, for the 
sample of thickness 0.20 cm, the average phase lag is 
12 deg and the slope of the loop is 1.19 J g-]  K -1, 
which would give an error of 22% in the heat capacity. 
We note that such errors will be larger in the melt 
state where the thermal conductivity of the material 
is lower and thermal gradients are larger than in the 
glass. These calculated results are corroborated by 
the experimental work of Marcus and Blaine who 
have noted that the decrease in the apparent heat 
capacity for thicker samples is related to the thermal 
conductivity. [28] 
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It is emphasized that the results presented in 
Figs. 1-6 are simulations. Experimental verification 
is needed. We also note that TMDSC may provide a 
tool to explore the reasons for the fact that the Tool-  
Narayanaswamy-type models do not fully represent 
the nonlinear response of  glass-forming materials 
[7,10,29]. 

5. Conclusions 

slope of  the Lissajous loop decreases and is 22% too 
low for a sample having a 0.20 cm thickness. 

The results obtained in this paper demonstrate 
that TMDSC, while a potentially useful new analytical 
tool, needs to he used with caution when analyzing 
materials in the vicinity of  Tg, where nonlinearities 
occur and when using sample thicknesses typical 
of  untemperature-modulated DSC samples because 
thermal lag affects the apparent heat capacity and 
phase lag. 

The temperature-modulated DSC experiment for 
two glassy polymers, polystyrene and poly(vinyl 
chloride) was analyzed in the context of  the Tool-  
Narayanaswamy-Moynihan model of  structural 
recovery. Using a Lissajous loop analysis, we demon- 
strate that the oscillating heat flow becomes a distorted 
sine wave in the vicinity of  the glass. The degree of  
distortion increases as the magnitude of  the excess 
enthalpy annealing peak increases. These results 
demonstrate that a linear analysis of  the TMDSC 
experiment, as suggested by Schawe [3], will not be 
valid in this region under the conditions analyzed 
here. 

We also find that the material parameters used in the 
Tool-Narayanaswamy-Moynihan model [5,6] affect 
the degree of  distortion observed in the Lissajous loop 
in the vicinity of  Tg. Surprisingly, the magnitude of  the 
loop distortion was greater for the polystyrene than for 
poly(vinyl chloride), in spite of  the fact that poly(vinyl 
chloride) has a larger nonlinearity parameter x (i.e. the 
structure dependence of  the relaxation time is larger). 
At the same time, polystyrene shows a narrower 
distribution of  relaxation times, indicating that the 
distortion of  the sinusoidal heat flow is dampened by 
the broader relaxation spectrum of  the poly(vinyl 
chloride). 

The ideal material analysis, without incorporating 
thermal lag, shows that the heat capacity of  the 
materials deep in the glass and in the equilibrium 
liquid state can be obtained directly from the slope of  
the major axis of  the Lissajous plot of  d H / d t  vs. dT/dt.  

However, when thermal gradients are present in the 
sample, the slope of  the Lissajous loop decreases and 
its width increases. For a 0.05 cm thick polystyrene 
sample, the error in the apparent heat was calculated to 
be < 0.1%. As the sample thickness increases, how- 
ever, the apparent heat capacity calculated from the 
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